
Inflation and Price Flexibility∗

Ivan Petrella†

Collegio Carlo Alberto, University of Turin
University of Warwick & CEPR

Emiliano Santoro‡

Catholic University of Milan

Yannik Winkelmann§

University of Tübingen

October 2024

Abstract

Using UK consumer price microdata, we report that aggregate price flexibility varies substan-
tially over time and induces significant non-linearity in inflation. In a regime of high flexibility,
the half-life of inflation drops by 50% and its volatility rises considerably. Such asymmetry arises
naturally from state-dependent pricing, for which we find ample evidence in the data, particularly
following the Great Recession. Neglecting this property may lead to a systematic underprediction
of inflation, as seen in the post-COVID-19 inflation surge. Tracking real-time movements in price
flexibility is crucial for assessing inflation dynamics and has the potential to improve forecasts and
inform monetary-policy strategies.

JEL codes: C22, E30, E31, E37.
Keywords: Inflation, price flexibility, Ss models, state-dependence.

∗This paper is a deeply revised version of “Time-varying Price Flexibility and Inflation Dynamics” of which Lasse de
la Porte Simonsen was a co-author. We wish to thank Lasse for his input during the initial stage of this project. We also
thank for comments Yoosoon Chang, Andrea Colciago, Luca Dedola, Federico Di Pace, Etienne Gagnon, Ana Galvao,
Francesco Lippi, Ricardo Nunes, Chiara Osbat, Roberto Pancrazi, Giorgio Primiceri, Omar Rachedi, Federico Ravenna,
Søren Hove Ravn, and Joseph Vavra.

†Collegio Carlo Aberto, University of Turin, University of Warwick and CEPR. Address: Piazza Vincenzo Arbarello,
8, 10122 Turin, Italy. E-mail : ivan.petrella@carloalberto.org.

‡Department of Economics and Finance, Catholic University of Milan. Address: Via Necchi 5, 20123 Milan, Italy.
E-mail : emiliano.santoro@unicatt.it.
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1 Introduction

Over the past decade, the growing availability of disaggregated consumer price data has

allowed economists to closely analyze price-setting behavior, assess the empirical validity of

various price-adjustment theories, and derive various measures of aggregate price flexibility.

The latter, broadly understood as the response of the aggregate price level to nominal shocks,

is central to the transmission of monetary policy, and ultimately shapes the trade-off Central

Banks face between stabilizing output and inflation. While numerous studies have measured

the response of prices to nominal stimuli, little attention has been paid to the sources and

characteristics of changes in price flexibility.1 Most notably, the literature has largely over-

looked how, and to what extent, time-varying price flexibility affects inflation dynamics and

the ability of inflation-targeting Central Banks to meet their targets. We aim to address this

gap by demonstrating that state-dependence in price flexibility is crucial for generating accu-

rate inflation projections, enhancing our understanding of inflation dynamics, and supporting

more effective inflation-targeting mandates.

Using monthly price microdata underlying the UK Consumer Price Index (CPI) from 1996

to 2024, we estimate the generalized Ss model developed by Caballero and Engel (2007). Along

with encompassing various price-setting protocols, this model is well suited to examine time

variation and comovement among various price-setting statistics. Estimation involves fitting

both the distribution of price gaps (i.e., the wedge between actual and optimal reset prices)

and the adjustment hazard (i.e., the probability of a good’s price changing as a function of

its price gap). Both functions vary substantially over time, displaying some distinct asym-

metries that are extremely informative about the microeconomics of price setting. Notably,

changes in the price-adjustment cost structure triggered by the Great Recession have led to a

pronounced downward shift and flattening of the adjustment hazard, implying greater inaction

in price adjustment. During this time span, we observe a significant shift to a price-setting

regime characterized by a substantial increase in the dispersion of price changes, along with a

concurrent decline in the frequency of price adjustment. In other words, price changes became

larger but less frequent, compared to the pre-Great Recession period. This pattern reverts at

the onset of the COVID-19 recession.

At the aggregate level, we show that the response of inflation to a one-off nominal shock,

price flexibility, varies significantly over time, peaking during 2008-2011—almost double the

pre-recession level—before halving by 2016 and then climbing steadily to its latest peak during

the COVID-19 crisis. Concurrently, inflation has fluctuated sharply since the onset of the

Great Recession, being almost twice as volatile, even excluding the post-COVID-19 sample.

We suggest that changes in price flexibility shape inflation dynamics. The idea is that similar

inflationary shocks—such as exchange rate fluctuations and commodity price changes—may

lead to very different inflation outcomes depending on the price-flexibility regime in place.

Failure to recognize such state dependence may help explain why the Bank of England has

frequently struggled to meet its 2% inflation target in recent years.

1In this regard, Caballero and Engel (1993b) and Berger and Vavra (2017) are notable exceptions.

2



We exploit our time-varying estimates of the Ss model to establish a connection between

inflation and the underlying process of price-setting. To this end, we back out predetermined

price adjustments—the so-called intensive margin—and adjustments triggered or canceled by

the shock—the extensive margin.2 While the intensive margin was typically the primary driver

of price flexibility up until the Great Recession, state dependence in price setting—reflected in

the extensive margin—becomes largely dominant thereafter, so that larger price adjustments

become more likely to be enacted. Such development induces considerable volatility in inflation

dynamics.

The central message of this paper is that regime shifts in price flexibility are key to un-

derstand inflation dynamics. To see this, we estimate a regime-dependent model of inflation,

setting price flexibility as a state variable. The half-life of inflation is 50% higher during periods

of relatively low flexibility. Otherwise, inflation tends to be more volatile, less persistent, and

is typically higher when price flexibility is relatively high. We test if the Bank of England and

broader market participants account for such state dependence in their forecasting practices,

and examine whether their forecast errors are uncorrelated with flexibility regimes. Inflation

forecasts are generally unbiased when aggregate price flexibility is low or average, but evidence

suggests a significant negative bias during periods of high price flexibility, even excluding the

post-COVID-19 part of the sample. In fact, we devise a counterfactual experiment in which

the Bank of England’s forecasts at the onset of the last inflation spike are adjusted for the

high-flexibility bias, showing how this factor should have suggested to abandon the view of a

rapid return of inflation to target.

Our work has important implications for monetary authorities aiming to stabilize infla-

tion. In periods of relatively low price flexibility, inflationary shocks are likely to dissipate

slowly, while the same shock would result in a larger inflation response—but also revert more

quickly—under high price flexibility. This can help explain why the Bank of England, along

with other central banks, was caught off guard by the rapid inflation surge following COVID-

19, and equally surprised by the swift decline beginning in the second half of 2023. Such state

dependence is likely to influence the trade-off central banks face between stabilizing output and

inflation. While this insight naturally emerges in state-dependent models of price setting, it is

only minimally incorporated into central bank practices and communications. We underscores

the practical importance of tracking real-time changes in price flexibility to improve the as-

sessment of inflation persistence and shock passthrough, ultimately supporting more informed

monetary policy decisions.

Related literature Our work relates to a number of studies that have examined the con-

nection between micro price changes and aggregate inflation.3 The paper that connects most

2Adjustments occurring over the intensive margin characterize both time- and state-dependent models. The
extensive margin, instead, is a defining feature of state-dependent models.

3See, among others, Bils and Klenow (2004), Dotsey and King (2005), Alvarez et al. (2006), Gertler and
Leahy (2008), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008), Gagnon (2009), Costain and
Nakov (2011), Midrigan (2011), Nakamura et al. (2011), Alvarez and Lippi (2014), Karadi and Reiff (2019),
Berardi et al. (2015), Alvarez et al. (2016), Nakamura et al. (2018).
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closely to our analysis is Berger and Vavra (2017), who report that price flexibility is time-

varying. Relative to this work, our novel contribution is to show how accounting for time

variation in price flexibility improves our understanding of inflation dynamics: in this respect,

we document that inflation is less persistent and more volatile in periods of relatively high price

flexibility, an show how neglecting this fact can lead to a negative prediction bias. We also

relate to Luo and Villar (2021) by highlighting the importance of time variation in the hazard

function for quantifying the pass-through of monetary shocks to prices. In fact, movements

in firms’ incentives to price adjustment are shown to be prominent (in this respect, see also

Hobijn et al., 2006).

Our work also builds on a number of papers that devise and estimate specific structural

models that connect movements in the distribution of price changes to price flexibility (see,

e.g., Midrigan, 2011, Alvarez et al., 2016 and Vavra, 2014, among others). An empirical

limitation of these models is their reliance on specific shocks to price-setting units, whereas

our approach is more agnostic. This is advantageous, as it allows us to avoid committing to

a specific price-adjustment mechanism ex ante. In fact, we demonstrate that the observed

pattern of time variation in the price change distribution aligns with a different mix of first-

and second-moment shocks, as well as shifts in firms’ endogenous incentives to adjust their

prices.

We also relate to some recent empirical contributions employing individual consumer prices

from the UK. In this respect, Bunn and Ellis (2012) have been among the first to investigate

the key characteristics of the frequency of price setting and the hazard functions implied by the

microdata from the Office for National Statistics (ONS), while Dixon et al. (2020) have focused

on the impact of the Great Recession on price setting. The latter, in particular, attributes little

importance to endogenous macroeconomics effects on pricing, while our evidence points to a

certain prominence of state dependence in price setting, and more so during the sample that is

not accounted for in their analysis (i.e., post-2013), during which the extensive margin of price

adjustment overcomes the intensive one (i.e., the frequency of adjustment) in the contribution

to price flexibility. In fact, the novelty of the approach rests on tracking time changes in both

margins of adjustment, rather than focusing on their average importance. Our application

underlines the role of the selection effect for aggregate inflation (see, on this, Carvalho and

Kryvtsov, 2021 and references therein), along with stressing its time variation. Finally, Chu

et al. (2018) emphasize that the distribution of price changes can be used to forecast inflation.

We extend this by showing that price flexibility—capturing essential information from key

micro price statistics—also provides valuable insights for predicting inflation.

Structure The rest of the paper is organized as follows. Section 2 discusses the key charac-

teristics of the ONS microdata on consumer prices. Section 3 reviews the generalized Ss model

and takes it to the data. Section 4 examines time variation in the distribution of price gaps and

the adjustment hazard, as well as the relative importance of adjustments along the intensive

and the extensive margin at different points in time. Section 5 discusses the implications of
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state dependence in price flexibility for inflation dynamics and forecasting. Section 6 concludes.

2 Microdata on consumer prices

We use ONS microdata underpinning the UK CPI. Prices are collected on a monthly basis,

for more than 700 categories of goods and services, and published with a month lag. Our sample

covers the 1996:M2-2024:M8 time window, thus resulting into about 37.4 million observations

(see Table 1). Each month around 109, 000 prices are collected by a market research firm on

behalf of the ONS. There are also about 150 items for which the corresponding price quotes

are centrally collected. These are excluded from the publicly available dataset, as the structure

of their market segment might allow the identification of some price setters, or because of the

need to frequently adjust for quality changes.4 Price quotes are recorded on or around the

second or third Tuesday of the month (Index day), with the exact date being kept secret to

avoid abnormal prices that, among other things, may be due to the collection of prices during

bank-holiday weeks, or to price manipulations by service providers and retailers. Furthermore,

to make sure the collected price quotes are valid prices, the ONS has set various checks in

place, both at the collection point and at later stages in the process. As a preliminary step in

handling the dataset, we only employ price quotes that have been marked as being validated by

the system or accepted by the ONS. Thus, any price quote that has been marked as missing,

non-comparable, or temporarily out of stock is excluded from the sample. We refer to the

remaining subset of prices—which make for approximately 60% of those included in the CPI—

as Classification Of Individual COnsumption by Purpose (COICOP) price quotes.

Each price quote is classified by region, location, outlet and item. The region refers to the

geographical entity within the UK from which a given price quote is recorded. The location

is intended as a shopping district within a given region: on price-collection days, 141 different

locations are visited.5 For a given location, the shop code is a unique but anonymized id

associated with the outlet from which the quote is recorded. In turn, each shop is classified

according to whether it is independent (i.e., part of a group comprising less than 10 outlets

at the national level) or part of a chain (i.e., more than 10 outlets). Due to a confidentiality

agreement between the ONS and the individual shops, for each price quote only the region,

outlet and item classifications are published. In light of this, some of the price quotes may

not be uniquely identified. This is typically the case when the ONS samples the same item,

in outlets that are part of a chain, but for multiple locations within the same region. As an

example, in March 2013 we pick an item with the following characteristics: ‘Women’s Long

Sleeves Top’ (id : 510223) sold in multiple outlets (shop type: 1) within the region of London

(region: 2). With these coordinates at hand we retrieve two different price quotes: one location

4This is typically the case for personal computers, whose frequent model upgrades impose the use of hedonic
regressions, so as to enhance comparisons across time.

5Until August 1996, 180 different locations were being sampled. New locations are chosen every year, with
about 20% of them being replaced. As a result, a location is expected to survive an average of about four years
in the sample.
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Table 1: Summary Statistics

Categories

COICOP Unique History Regular

Price Quotes

Total 37, 390, 169 37, 171, 595 34, 063, 217 30, 401, 232

Avg. per Month 109, 009 108, 372 99, 309 88, 633

Avg. CPI Weight 59.81% 59.51% 54.89% 50.07%

Sales and Recoveries

Avg. per Month (Unweighted) 10.44% 10.46% 10.69%

Avg. per Month (Weighted) 5.14% 5.14% 4.82%

Product Substitutions

Avg. per Month (Unweighted) 1.02% 1.02% 0.58%

Avg. per Month (Weighted) 0.48% 0.48% 0.25%

Notes: COICOP stands for the Classification Of Individual COnsumption by Purpose price quotes used to
calculate the CPI index; Unique indicates the COICOP price quotes that are uniquely identified; History
refers to the subset of price quotes in the Unique category for which we can identify at least two consecutive
price quotes; Regular refers to the price quotes in the History category that do not correspond to sales,
product substitutions, or recovery prices. For each of these categories, we compute the weighted contribution
of each category’s price quotes to the CPI index, as well as the relative number of price quotes corresponding
to sales, recovery prices, and product substitutions. Whenever weighted, these statistics are obtained by
accounting for CPI, item-specific, stratum and shop (i.e., elementary aggregate) weights. Sample period:
1996:M2-2024:M8.

sells the item for £22, and one for £26. In February 2013 the price quotes for the same type

of good were recorded at £25 and £26, respectively. The price quotes are so close that telling

the two price trajectories apart may be challenging. To make sure that price trajectories can

be uniquely identified, we look at ‘base prices’, which are intended as the January’s price for

each of the items under scrutiny.6 Even after conditioning on base prices, though, a small

portion of price trajectories are still not uniquely identified (about 0.6%, on average): we opt

for discarding them. In Table 1 the column labeled ‘History’ refers to the price quotes with an

identifiable history that spans at least two consecutive periods. Following the criteria outlined

above, we drop about 9, 000 quotes per month.7

To aggregate the individual price quotes into a single price, we also make use of the following

weights produced by the ONS:8 the shop weights, which are employed to account for the fact

that a single item’s price is the same in different shops of the same chain (e.g., a pint of milk at

a Tesco store);9 the stratification weights, which reflect the fact that purchasing patterns may

6The base price is typically relied upon to normalize price quotes and calculate price indices, or to adjust
for changes in the quality and/or quantity of a given good.

7Due to a particularly low coverage, Housing and Housing Services(COICOP 4) and Education (COICOP
10) are excluded from the sample. We also exclude price changes larger than 300%, which we deem to be due
to measurement errors. These take place rarely (< 0.02%). Appendix A provides additional details on the
construction of the dataset.

8See Chapter 7 of the ONS CPI Manual (ONS, 2019).
9In this case the ONS enters a single price for a pint of milk, but the weight attached to this is ‘large’, so

as to reflect that all Tesco stores within the region have posted the same price.
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differ markedly by region or type of outlet;10 finally, the item and COICOP weights reflect

consumers’ expenditure shares in the national accounts.

2.1 Variable definition

After deriving our price quotes in line with the criteria set out above, it is important to

make a distinction between regular and temporary price changes such as sales, which tend to

behave significantly differently from that of regular prices (see Eichenbaum et al., 2011 and

Kehoe and Midrigan, 2015). To this end, we first exclude all the price quotes to which the

ONS attaches a sales indicator.11 As a second step, we implement a symmetric V-shaped filter,

as defined by Nakamura and Steinsson (2010b), for the remaining price quotes. According to

the filter, the sale price of item i at time t, P s
i,t, is identified as follows: i) it is lower than last

period’s price (i.e., P s
i,t < Pi,t−1) and ii) the next period’s price is equal to last period’s price

(i.e., Pi,t+1 = Pi,t−1). A recovery price P r
i,t, instead, meets the following criteria: i) it is greater

than last period’s price (i.e., P r
i,t > Pi,t−1) and ii) it is such that P r

i,t = Pi,t−2. Once a price

quote has been identified as being a sale or a recovery price, we discard it from the sample.12

Item substitutions are a further reason of concern when trying to identify price trajectories,

as they require a certain degree of judgment to establish what portion of a price change is

due to quality adjustment, and which component reflects a pure price adjustment. Product

substitutions occur whenever an item in the sample has been discontinued from its outlet,

and the ONS identifies a similar replacement item to the price going forward. Therefore, it is

reasonable to expect that product turnovers are followed by price changes that either reflect

uncaptured quality changes (Bils, 2009), or simply reflect a low-cost opportunity to reset prices

that has nothing to do with the underlying sources of price rigidity, as argued by Nakamura

and Steinsson (2008). In line with previous contributions, we interrupt a trajectory whenever

it encounters a substitution flag, as indicated by the ONS (see, e.g., Berardi et al., 2015, Berger

and Vavra, 2017, and Kryvtsov and Vincent, 2021).

Table 1 shows that, after these preliminary steps, we are down to a monthly average of

88, 600 price quotes. As a final step, we define the price change of item i at time t as ∆pi,t =

log (Pi,t/Pi,t−1).
13

10Four levels of sampling are considered for local price collection: locations, outlets within location, items
within location-outlet section and individual product varieties. For each geographical region, locations and
outlets are based on a probability-proportional-to-size systematic sampling, where size accounts for the number
of employees in the retail sector (locations) and the net retail floor space (outlets).

11For a price to be marked as being associated with a sale, the ONS requires the latter to be available to
all potential costumers—so as to exclude quantity discounts and membership deals—and that it only entails a
temporary or an end-of-season price reduction. This definition excludes clearance sales of products that have
reached the end of their life cycle.

12See also Nakamura and Steinsson (2008) and Vavra (2014). As an alternative approach, in place of the
price associated with a sale, Klenow and Kryvtsov (2008) report the last regular price, until a new regular price
is observed. Our results are robust to this approach.

13We also compute price changes as ∆pi,t = 2
Pi,t−Pi,t−1

Pi,t+Pi,t−1
. This definition has the advantage of being bounded

and less sensitive to outliers. The results—virtually unchanged with respect to the ones we report—are available
from the authors, upon request.
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2.2 Stylized facts

This section presents some key facts about the behavior of the ONS microdata, and their

implications for inflation dynamics. We start by re-writing inflation as the product of the

frequency of adjustment (frt)—defined as the share of prices being adjusted in every month—

and the average price change in every month (∆pt):

πt = frt ×∆pt. (1)

The frequency is computed as
∑

i ωi,t1{∆pi,t ̸=0}, with ωi,t denoting the CPI weight associated

with good i at time t, and 1{∆pi,t ̸=0} = 1 if ∆pi,t ̸= 0, and zero otherwise. The average price,

instead, is computed as fr−1
t

∑
i ωi,t1{∆pi,t ̸=0}∆pi,t. All the statistics derived from microdata

display a pronounced seasonality (see, e.g., Alvarez et al., 2006), which we remove by computing

the 12-month moving average.

The top panels of Figure 1 report frt and ∆pt, respectively. As expected, the average

price change tracks CPI inflation closely, at least until the end of the Great Recession, to then

resume a tight comovement towards the end of 2015. As for the frequency of adjustment, it

reflects a contractionary trend beginning with the inflation decline initiated in 2012—falling well

below its previous sample average—before showing a significant reversal during the COVID-

19 pandemic.14 As for the frequency of price adjustments, its value increased significantly

during the most recent inflationary episode. However, even at its peak, only about 14% of

prices were adjusted each month, despite inflation exceeding 10%. This rate is considerably

lower than what was documented during high-inflation periods in the US (see Nakamura et al.,

2018). In fact, despite exceptional inflationary pressures, the recent surge in the frequency of

price adjustment in the UK remains lower than during the Great Recession, when inflation

was “only” around 4%. In the next section, we will show how these most recent figures can

be explained by the fact that predetermined price adjustments—as measured by frequency—

represent only part of the overall adjustment activity. Indeed, state dependence in price setting

will be shown to play a prominent role, with significant implications for inflation volatility and

persistence.

14The average frequency of price adjustment prior to its drop is slightly below the estimates reported by
previous studies on UK price microdata conducted over roughly the same time span. This reflects the fact that
we exclude from our sample both sales and utility prices (COICOP 4), the latter being a particularly volatile
component of the CPI index. By contrast, Bunn and Ellis (2012) include utility prices and sales, while Dixon
and LeBihan (2012), Dixon et al. (2020) and Dixon and Tian (2017) only include sales.
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Figure 1: Frequency, Average Price Changes, and Dispersion
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Notes: The frequency of price adjustment, frt , measures the share of prices being adjusted in every month,
and is computed as

∑
i ωi,t1{∆pi,t ̸=0}, where ωi,t denotes the CPI weight associated to good i at time t,

and 1{∆pi,t ̸=0} = 1 if ∆pi,t ̸= 0 and zero otherwise. The average price, instead, is denoted by ∆pt and is

computed as fr−1
t

∑
i ωi,t1{∆pi,t ̸=0}∆pi,t. All series are reported in percentage terms. In the bottom-left

panel of the figure we decompose the deviation of inflation from its sample average between the contribution
of the variation in the average price change (holding the frequency fixed) and that of the variation in the
frequency of adjustment (holding the average price change fixed). Specifically, since πt = frt∆pt, one can
take the following decomposition: πt − fr∆p = fr(∆pt −∆p) +∆p(frt − fr) + (∆pt −∆p)(frt − fr). The
inflation rate graphed in the upper panels of the figure is the official CPI inflation rate published by the
ONS. The shaded vertical bands denote the duration of recessionary episodes.
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Table 2: Pricing Moments and Macroeconomic Variables 1997:M1-2024:M8

Rotemberg Filter Year-over-Year Filter

frt q75,t − q25,t q90,t − q10,t frt q75,t − q25,t q90,t − q10,t

I(Rec.) 0.600 1.562 2.880 0.862 1.114 2.821

yt -0.068 -0.278∗∗ -0.267∗∗ -0.201 -0.174 -0.145

πt 0.292∗∗ -0.424∗∗∗ -0.444∗∗∗ 0.355∗∗∗ -0.596∗∗∗ -0.665∗∗∗

frt – -0.377∗∗∗ -0.431∗∗∗ – -0.321∗∗ -0.427∗∗∗

Quadratic Detrending Hamilton Filter

frt q75,t − q25,t q90,t − q10,t frt q75,t − q25,t q90,t − q10,t

I(Rec.) 2.586∗∗ 1.263 0.959 3.423∗∗ 2.055 3.775

yt -0.188 -0.292∗∗ -0.213∗ -0.107 -0.409∗∗∗ -0.372∗∗∗

πt 0.560∗∗∗ -0.483∗∗∗ -0.565∗∗∗ 0.424∗∗∗ -0.613∗∗∗ -0.641∗∗∗

frt – -0.428∗∗∗ -0.607∗∗∗ – -0.422∗∗∗ -0.523∗∗∗

Notes: The first row of each table reports the value of the correlation coefficients associated with a recession
dummy. The variables involved are frt, the frequency of price adjustment, and two quantilic measures
of dispersion of price changes, where qn,t measures the n−th quantile of the distribution of price changes.
The remaining rows report pairwise correlations with yt, which denotes detrended GDP, πt, standing for
aggregate CPI inflation, and frt. Aside of the inflation rate, all series are obtained by detrending their raw
counterparts by means of: i) Rotemberg (1999) version of the HP filter, which sets the smoothing coefficient
so as to minimize the correlation between the cycle and the first difference of the trend estimate (top left
panel); ii) linear and quadratic detrending of the series (bottom left panel); iii) year-over-year change, as
suggested in Stock and Watson (2019) (top right panel); (iv) two-years difference, as suggested by Hamilton
(2018) (bottom right panel). ∗∗∗/∗∗/∗ indicates statistical significance at the 1/5/10% level, respectively
(the standard errors for the cyclicality calculation are adjusted for serial correlation using a Newey-West
correction with optimal lag length).



The bottom-left panel of the figure looks deeper into the cyclical behavior of the rate of

inflation, decomposing inflation deviations from the sample mean as in, e.g., Gagnon (2009):

πt − fr∆p = fr(∆pt −∆p) + ∆p(frt − fr) + (∆pt −∆p)(frt − fr), (2)

where i) the first term captures the variation in aggregate inflation associated with changes in

the average change of those prices that change from one period to the next one, ii) the second

one accounts for variation in the frequency of adjustment, and iii) the last term accounts

for joint variation of the two moments around their respective sample means. Notably, only

about half of inflation variability is explained by that of average price changes, the remaining

part being accounted for by changes in the frequency (either directly or indirectly, through

its positive comovement with the average price change). A relatively large contribution of the

frequency is particularly evident in the post-Great Recession sample. Focusing on the post-

COVID-19 peak in inflation, instead, most of the deviation from the mean can be attributed to

the price-change component (in line with evidence documented by Montag and Villar, 2022, for

the US). However, changes in the frequency of price adjustment, coupled with the interaction

term, still account for approximately one-third of inflation at the peak.

The bottom-right panel of the figure plots different measures of dispersion of the distribution

of (non-zero) price changes. Both the interquantile and the interdecile range display a large

increase in the aftermath of the Great Recession, to then skyrocket and abruptly decline in

coincidence with the onset and the attenuation of the COVID-19 emergency, respectively.15

A key observation from the graphical analysis is that the dispersion of price changes and the

frequency of adjustment tend to move in opposite directions. For example, in the first decade

of the sample, the average frequency of price adjustment is roughly 50% higher, whereas the

average interquartile range of price changes is twice as large in the last decade, as compared

with the first one. Similarly, in the post-COVID-19 period, the peak in the dispersion of price

changes occurred alongside a very low frequency of adjustment, just before the inflation surge

in the second half of 2021. Conversely, the peak in the frequency of price adjustment in late

2022 coincided with a very low level of dispersion in price changes. These opposite movements

suggest major shifts between a regime of relatively small—yet, frequent—price changes, and

one of much larger—yet, more infrequent—adjustments in prices.16

Notably, also the detrended versions of the two statistics consistently display negative cor-

relation. To see this, Table 2 reports the correlation between different detrended measures of

the frequency of adjustment and the dispersion of price changes, as well as the degree of co-

movement of each of the two with detrended GDP. Potential spurious correlation arising from

low-frequency movements in the series of interest is set aside through detrendization—using

different filters—with the exception of the inflation rate. Albeit denoting a marked increase in

15Also the standard deviation displays a similar pattern. However, this measure is often influenced by
outliers. This type of problem does not plague the interquantile and the interdecile range.

16Figure B.1 in Appendix B shows that composition effects have no role in generating the facts presented in
this section: here we compare the moments of the distribution of price changes with their counterparts obtained
by averaging the corresponding moments of the price quotes, for each of the 25 COICOP group categories.
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correspondence of the two recessionary episodes, the frequency of price adjustment displays no

particular comovement with the business cycle. As for the dispersion of price changes, some

degree of countercyclicality is instead detected.

As stressed by Vavra (2014), the cyclical properties of these statistics and their joint dynam-

ics are key to unveiling the endogenous and exogenous determinants of price adjustment, and

to tracking time variation in the pass-through of nominal shocks to inflation. The remainder

of the analysis will be devoted to examine these aspects.

3 Framing the analysis

To explore the origins of time variation in the moments of the price-change distribution

and how they may reflect different price adjustment protocols, we draw on the generalized Ss

setting developed by Caballero and Engel (2007). This model has two clear advantages that

make it particularly indicated to discipline our data. First, it is consistent with lumpy and

infrequent price adjustments—which are typically seen as distinctive traits of price setting—

along with encompassing several pricing protocols.17 In this respect, Berger and Vavra (2017)

show how this empirical setting provides a good fit to the data generated by different structural

models (e.g., Golosov and Lucas, 2007 and Nakamura and Steinsson, 2010a). Second, as we

allow for time variation in the determinants of price adjustment, we can estimate the model

over each cross section of price microdata, matching different price-setting statistics.

To contextualize the framework assume that, due to price rigidities, the log of firm i’s

actual price may deviate from the log of the target or reset price, which is denoted by p∗it.

Thus, we define the price gap as xit ≡ pit−1 − p∗it, implying that a positive (negative) price gap

is associated with a falling (increasing) price when the adjustment is actually made. A price

is adjusted when the associated price gap is large enough, and pit = p∗it after the adjustment

has taken place. Assuming lit periods since the last price change, the adjustment reflects the

cumulated shocks: ∆pit =
∑lit

j=0 ∆p
∗
it−j, with ∆p∗it = µt + υit, where µt is a shock to nominal

demand and υit is an idiosyncratic shock.

Caballero and Engel (2007) assume iid idiosyncratic shocks to the adjustment cost. Thus,

by integrating over their possible realizations, we obtain the adjustment hazard, Λt (x). This

is defined as the (time t) probability of adjusting—prior to knowing the current adjustment

cost draw—by a firm that would adjust by x in the absence of adjustment costs (i.e., as if

the adjustment cost draw was equal to zero). Caballero and Engel (1993a) prove that the

probability of adjusting is non-decreasing in the absolute size of a firm’s price gap (i.e., the

so-called ‘increasing hazard property’). Denoting with ft (x) the cross-sectional distribution of

price gaps immediately before an adjustment takes place at time t, aggregate inflation can be

17To focus on two somewhat extreme examples, the generalized Ss model can account for both price setting
à la Calvo (1983)—where firms are selected to adjust prices at random and price flexibility is fully determined
by the frequency of adjustment—as well as for schemes à la Caplin and Spulber (1987)—where adjusting firms
change prices by such large amounts that the aggregate price is fully flexible, regardless of the frequency of
adjustment.
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recovered as

πt = −
∫
xΛt (x) ft (x) dx. (3)

Notice that the Calvo pricing protocol implies the same hazard across x’s (i.e., Λt (x) = Λt >

0, ∀x).

3.1 Taking the model to the data

To take the model to the data, we need to specify a functional form for the distribution of

price gaps and the hazard function.18 We postulate that the distribution of price gaps at time

t, ft (x), can be accounted for by the Asymmetric Power Distribution (APD henceforth; see

Komunjer, 2007). The probability density function of an APD random variable is defined as

ft (x) =


δ(ϱt,νt)

1/νt

ψtΓ(1+1/νt)
exp

[
− δ(ϱt,νt)

ϱ
νt
t

∣∣∣x−θtψt

∣∣∣νt] if x ≤ θt
δ(ϱt,νt)

1/νt

ψtΓ(1+1/νt)
exp

[
− δ(ϱt,νt)

(1−ϱt)νt

∣∣∣x−θtψt

∣∣∣νt] if x > θt
, (4)

with δ (ϱt, νt) =
2ϱ

νt
t (1−ϱt)νt

ϱ
νt
t +(1−ϱt)νt

. The parameters θt and ψt > 0 capture the location and the scale of

the distribution, whereas 0 < ϱt < 1 accounts for its degree of asymmetry. Last, the parameter

νt > 0 measures the degree of tail decay: for ∞ > νt ≥ 2 the distribution is characterized

by short tails, whereas it features fat tails when 2 > νt > 0. This functional form nests a

number of standard specifications, such as the Normal (νt = 2), Laplace (νt = 1) and Uniform

(νt → ∞). Most importantly, it can capture intermediate cases between the Normal and the

Laplace distribution, which is consistent with the steady-state distribution of price changes

according to Alvarez et al. (2016).

We then assume that the hazard function can be characterized by an asymmetric quadratic

function:19

Λt (x) = min
{
at + btx

2
1{x>0} + ctx

2
1{x<0}, 1

}
, (5)

where 1{z} is an indicator function taking value 1 when condition z is verified, and zero oth-

erwise. This parsimonious specification nests the Calvo pricing protocol for bt = ct = 0, while

allowing for asymmetric costs of adjustment, which has recently been supported by Luo and

18Alvarez et al. (2023) highlight that the moments of the price gap distribution, together with the frequency
of price changes, provide enough information to identify the distribution of price gaps and the hazard function.
In fact, they show—for the case of symmetric functional forms—that Λt(x) and ft(x) are fully encoded in
distribution of price changes and frt. While our estimates do not explicitly take into account this mapping,
in Section 4 we show that our estimates return measures of the cumulative response of prices to a monetary
stimulus which are consistent with alternative measures of money non-neutrality, such as the one proposed by
Alvarez et al. (2016).

19Unlike Berger and Vavra (2017), we allow for asymmetry in the hazard function, along with the distribution
of price gaps. In fact, the distribution of price changes is characterized by some sizeable asymmetry, as well
as a marked tendency of skewness to vary over time. Moreover, there is a sizable difference between the
frequency of price adjustment associated with positive and negative price changes (both statistics are reported
in Figure H.1). By allowing both the distribution of price gaps and the hazard function to be asymmetric, we
avoid assuming that the underlying asymmetries in the data are entirely driven by either of the two functions.
In support of this choice, the assumption of symmetric branches in the hazard function is generally rejected by
the data.
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Villar (2021).20

Given the parametric specifications of ft (x) and Λt (x), we estimate seven parameters for

each cross section of price microdata, so as to match the following moments of the distribution

of price changes: mean, median, standard deviation, interquartile range, difference between the

90th and 10th quantile of the distribution, as well as (quantile-based) skewness and kurtosis (see

Groeneveld, 1998).21 We also match the frequency and the average size of prices movements,

conditioning on positive and negative price changes. Last, we match the observed rate of

inflation. The estimates are obtained by simulated minimum distance, using the identity

matrix to weight different moments.22 All the estimated parameters and the derived statistics

inherit some pronounced seasonal variation from the raw data. Thus, we report their 12-month

moving-average counterparts.

Identification Appendix C reports a series of exercises that highlight how close we come to

identify the shape of the price gap distribution and the hazard function. As a first exercise,

we evaluate the systematic impact of each of the estimated parameters on the moments that

we are matching. To this end, we vary the parameters of ft (x) and Λt (x)—one at the time,

while keeping all other coefficients at their baseline estimates—and examine their impact on key

moments of the price change distribution, as well as on the resulting rate of inflation. All in all,

marginal changes in the parameters typically correspond to large variation in the moments we

match, indicating the latter carry valuable information to identify the parameter of interest.

We then ask whether moment matching allows us to appropriately identify/distinguish the

shape of the price gap distribution from that of the hazard function. To see this, we simulate

price-change data from the model, under different parameterizations, and then contrast the true

price gap distribution and the hazard function to their estimated counterparts. The overall

discrepancy is minimal, and the model does a good job at separately identifying the parameters

of ft (x) and Λt (x).

3.2 Estimates

Figure 2 graphs the estimated price gap distributions and the hazard functions.23 Notably,

ft (x) widens considerably after 2010, with the post-COVID-19 inflationary episode marked

by a significant downward shift, followed by a rebound. Since early 2021, a shift in the price

20We have also checked that our results are robust to plausible variations to the specification of these
functional forms. Using a Pearson Type 7 distribution, a mixture of two Normal distributions, or a mixture of
a Laplace and a Normal distribution for the price gap, as well as an asymmetric inverted normal function for
the hazard function, delivers results that are qualitatively similar to those reported in the next section.

21We match quantilic moments, as the 3rd and 4th moments of the cross-sectional distribution are quite
sensitive to outliers.

22Altonji and Segal (1996) highlight that matching the unweighted distance between moments often performs
better in small samples, as compared with using optimal weights. The moments of the simulated distribution
are estimated by drawing 100, 000 price quotes. We use the Genetic Algorithm to minimize the quadratic
distance between data moments and simulated moments, so as avoid ending up in local minima (see, e.g.,
Dorsey and Mayer, 1995).

23Figures D.1 and D.2 report the estimated parameters, while Figure D.3 reports the fit of selected data
moments, and shows that the empirical model is able summarize the main stylized facts.
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Figure 2: Estimated Price Gap Distributions and Hazard Functions
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Note: Estimated Price Gap Distributions (left panel) and Hazard Functions (right panel), for each month

in the sample. The shaded vertical band in the left panel indicates the duration of recessionary episodes.

gap distribution indicates that a large fraction of price quotes have fallen below their optimal

level, suggesting that substantial price increases have become likely in the subsequent period.

As for Λt (x), its shape changes significantly over the entire sample, with periods of high and

low probability of adjusting prices that alternate over time. While the 2009-2012 time span is

characterized by a relatively high and steep hazard function—most likely as the result of three

VAT changes taking place over this short time window—24 we observe a prolonged period, up

until the pandemic, during which it shifts downwards and flattens.

Relative movements in ft (x) and Λt (x) may help explain the emergence of diverging pat-

terns in the frequency of adjustment and the dispersion of price changes, as those occurring

between the Great Recession and COVID-19. Figure 3 digs into this: in the left panel we

report the adjustment thresholds associated with 5% and 7% hazard probabilities, while the

right panel reports the share of prices within the corresponding thresholds. Notably, before the

Great Recession fewer than 10% of prices had less than a 5% probability of being adjusted. By

2020, this figure had increased to 50%, meaning half of all price quotes exhibited less than a

5% probability of adjustment. In the latter part of the sample, the magnitude of price changes

increased significantly, surpassing any previously observed levels: a typical price quote with a

5% probability of adjustment had a price gap of roughly 4%, compared to just 2.5% before the

Global Financial Crisis. Eventually, the distribution of price changes is characterized by fewer

but larger changes, with a skew towards price increases.

According to conventional menu cost models, a decline in the frequency of adjustment,

coupled with a surge in its dispersion, may be rationalized by an expansion in the inaction

region that overcomes the effects of a positive shift in the dispersion of price gaps.25 By the

24Namely, a reduction, from 17.5% to 15%, on December 1, 2008, followed by two hikes: one, up to 17.5%,
on January 1, 2010, and one, further up to 20%, on January 4, 2011. In particular, the first two VAT changes
are associated with a marked shift in the estimated parameters of the hazard function, as it is visible from
Figure D.2.

25Appendix E reports a stylized menu cost model that stresses how changes in the incentives firms face when
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Figure 3: Inaction in price adjustment
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of prices within the adjustment thresholds. The shaded vertical bands indicate the duration of recessionary
episodes.

end of the sample about five times as many firms are likely not to adjust, as compared with

the pre-2010 time window. This stands as indirect evidence that increasing price rigidity, as

captured by the downward shift in the hazard function, dominates the increase in the dispersion

of ft (x). Note also that nominal rigidity appears more pronounced with positive price gaps

than with negative ones, indicating a greater degree of downward price stickiness. On a more

general note, changes in the shape of the distribution of price gaps, coupled with a flattening of

the hazard function, imply that non-predetermined price adjustments—which are more likely

to occur for large price gaps—have played an increasingly important role in the recent past.

This explains why, in spite of the average frequency of price changes being much lower over the

last 15 years, inflation volatility has been significantly higher. For context, in the post-Great

Recession period inflation volatility has been almost 5 times greater than in the previous 10

years. Even excluding post-2020 observations, inflation in the second part of the sample is

more than twice as volatile as in the first one. Strikingly, over the past 15 years, (year-on-

year) inflation has been outside the 1%-3% range for 34 quarters—i.e., roughly 50% of the

time—compared to just 5 quarters in the first decade of the sample.

4 Inspecting price setting in a time-varying environment

The estimates of the generalized Ss model emphasize the importance of tracking changes

in the distribution of price gaps and the hazard function. Caballero and Engel (2007) show

that, within their accounting framework, one can derive a measure of aggregate price flexibility.

The latter measures the extent to which a marginal shift in the price gap distribution (such

deciding to change prices can provide us with a rationale for diverging movements in the dispersion of price
changes and the frequency of adjustment.
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as one stemming from a common macroeconomic shock that equally affects all price setters)

translates into contemporaneous inflation:

Ft = lim
µt→0

∂πt
∂µt

=

∫
Λt (x) ft (x) dx︸ ︷︷ ︸
Intensive Margin

+

∫
xΛ′

t (x) ft (x) dx︸ ︷︷ ︸
Extensive Margin

. (6)

In turn, aggregate price flexibility can be naturally decomposed into an intensive and an

extensive margin component. On one hand, the intensive margin (Int) measures the average

frequency of adjustment, and accounts for the part of inflation that reflects price adjustments

that would have happened even in the absence of the nominal shock. On the other hand,

the extensive margin (Ext) accounts for the additional inflation contribution of firms whose

decision to adjust is either triggered or canceled by the nominal shock. Therefore, it comprises

both firms that would have kept their price constant and instead change it, as well as firms

that would have adjusted their price but choose not to do it.26 It is also important to stress

that, since Ft is simply derived from the accounting identity (3), its validity as a measure of

aggregate flexibility does not require that we take a stand on a specific model of price setting.

Figure 4 reports the estimated index of price flexibility (left panel), as well as its decompo-

sition into the intensive and the extensive margin of price adjustment (right panel). Ft displays

sizable variation over time, rising substantially during the Great Recession, and showing some

secondary peaks during the following recessions. This is consistent with our analysis of the

distribution of price gaps. After the Great Recession, both the intensive and the extensive

margin of price adjustment contract, though the fall in the former is much more abrupt (in line

with the sustained drop in the frequency of adjustment). Concurrently, the extensive margin

takes over during this contraction in aggregate price flexibility: this can be explained upon

the fact that, over this phase, the expansion in the set of price gaps denoting an extremly low

likelihood of reset implies that fewer quotes are pushed near the adjustment boundaries. Even

after both margins revert in 2016, the extensive margin remains largely dominant, though.

To see why we observe such a switch in the relative contribution of the two margins, it is

useful to recall Caballero and Engel (2007) and their transformation of (6):

Ft =

∫
Λt (x) ft (x) [1 + ηt (x)] dx (7)

where ηt (x) = xΛ
′
t (x) /Λt (x) is the elasticity of the hazard function with respect to the price

gap. A downward shift in the hazard function magnifies ηt (x) and, as a result, the importance

of the extensive margin relative to the intensive one. This is exactly what happens after the

Great Recession, as it can be appreciated by inspecting the estimated constant of the hazard

function (see Figure D.2 in Appendix D). Alternatively, the same point can be made by

approximating the flexibility index as Ft ∼= Intt + 2 [Intt − Λt (0)]:
27 from this, it is clear how

26In this respect, it is useful to recall that, being characterized by a constant hazard function, Calvo price
setting implicitly assumes that the extensive margin is null.

27For a formal proof, please refer to Caballero and Engel (2007).
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Figure 4: Price Flexibility and Different Margins of Price Adjustment
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duration of recessionary episodes.

a downward shift in at—which is equivalent to lowering Λt (0)—translates into an increase

in the importance of the extensive margin relative to the intensive one, ceteris paribus. It

is important to recognize that such a shift in the hazard function is broadly in line with an

increase in market power that determines a drop in the cost of being away from the optimal

price. In fact, this view is consistent with the sizable increase in the markup that has been

observed during the post-recession period, as recently documented by DeLoecker and Eeckhout

(2018) and Bell and Tomlinson (2018) for the UK economy.28

Turning back to the movements in price flexibility, these do not appear to occur randomly:

Ft goes from being positively correlated with output growth in the decade preceding the Great

Recession (0.35), to comoving negatively thereafter (-0.14, considering the pandemic as the

endpoint of the second subsample). As for the correlation with the rate of inflation, it is gen-

erally positive, particularly in the 2009-2020 time interval (0.79). It is worth emphasizing how

changes in these correlations over the two subsamples are, again, coherent with a shift from

a setting where most of the price changes are predetermined to one where the extensive mar-

gin gains relevance,29 representing the main contributor to price flexibility and, consequently,

inflation volatility becomes particularly high (see Figure 4). This is central to our analysis in

the remainder of the paper.

Price flexibility and money non-neutrality Our analysis highlights a great deal of vari-

ation in aggregate price flexibility. However, we acknowledge the index we use is not the only

available measure of price flexibility. Alvarez et al. (2016) put forward a sufficient statistic for

28Both papers show that the markup has displayed only a modest increase in the 1996-2007 period, while
increasing substantially thereafter.

29Henkel et al. (2023) report a similar view for selected Eurozone countries, indicating that state dependence
in price setting has considerably added to the COVID-19 shock.

18



Figure 5: Comparison with Alvarez et al. (2016)
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Note: The left panel of the figure reports a scatter plot of the cumulated output response to a monetary policy

shock, as computed by Alvarez et al. (2016), against the index of price flexibility, as computed by Caballero

and Engel (2007). The right panel, instead, features a scatter plot of the cumulated output response to a

monetary policy shock against the cumulated inflation response to a one-off 1% nominal shock, where we

cumulate the inflation response over a 18-month period.

money non-neutrality, intended as the cumulative output response to a nominal shock. They

prove that, in a variety of sticky-price models, this is proportional to the steady-state ratio

of the kurtosis of the size distribution of price changes (Kur(∆pi)) to the frequency of price

adjustments (fr(∆pi)),
δ
6ϵ

Kur(∆pi)
fr(∆pi)

, where δ denotes the size of the monetary shock and ϵ is the

elasticity of labor supply.

The left panel of Figure 5 provides a direct comparison between Ft and
Kurt(∆pi)
frt(∆pi)

, which

is obtained by computing a quantilic version of the kurtosis of price changes, estimating it

for each month of the sample.30 A clear (convex) negative relationship emerges, despite the

two statistics not being directly comparable, as one measures the instantaneous pass-through

of nominal shocks to prices, while the other focuses on the cumulative impact of nominal

shocks on output. In fact, it may well be the case that a shock exerts a relatively low impact

on prices, taking a long time to be fully absorbed and leading to a large cumulative output

response. To account for this, we compute the cumulative response of inflation over the 18

months following a one-off 1% nominal shock. The right panel of Figure 5 shows a striking

(negative) correlation of our cumulative measure of price stickiness with the metric elaborated

by Alvarez et al. (2016).31 This reinforces our confidence in the empirical framework we rely

upon to track movements in the price gap distribution and the hazard function. The following

section provides an in-depth analysis of the relationship between fluctuations in price flexibility

and inflation dynamics.

30Specifically, this obtained as
q90,t−q62.5,t+q37.5,t−q10,t

q75,t−q25,t
(see, e.g., Groeneveld, 1998).

31The time-series profile of the two measures of money non-neutrality can be observed in Figure H.2.
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5 State dependence in inflation dynamics

Having established that price flexibility exhibits significant fluctuations throughout the

sample under examination, a natural question arises: do these movements matter for our

understanding of inflation dynamics? A straightforward exercise may help contextualize our

analysis of the connection between price flexibility and inflation dynamics. To this end, we use

estimates from the Ss model to derive the response of inflation to an aggregate nominal shock

across two distinct periods—one characterized by relatively strong and the other by relatively

weak pass-through of nominal shocks to inflation, respectively.32 Figure 6 illustrates that infla-

tion is more responsive and less persistent during periods of relatively high price flexibility. In

view of this, price flexibility likely holds valuable information for analyzing inflation dynamics.

This insight arises naturally in environments characterized by state-dependent pricing. The re-

mainder of this section examines whether aggregate inflation exhibits non-linearities consistent

with these properties and discusses the implications for the practice of inflation targeting.

5.1 Price flexibility and inflation dynamics

We seek to examine how inflation generally behaves in periods of relatively high and low

flexibility. To this end, we employ a regime-switching autoregressive moving average model,

where the transition across regimes is a smooth function of the degree of price flexibility.

The STARMA(p,q) model is a generalization of the smooth transition autoregression model

proposed by Granger and Terasvirta (1993).33 Estimating a traditional ARMA(p,q) for each

regime separately entails a certain disadvantage in that we may end up with relatively few

observations in a given regime, which typically renders the estimates unstable and imprecise.

By contrast, we can effectively rely upon more information by exploiting variation in the

probability of being in a particular regime, so that estimation and inference for each regime

are based on a larger set of observations (Auerbach and Gorodnichenko, 2012).34

We assume that inflation can be described by the following model:

πt = G
(
F̃t−1, γ

)(
ϕH0 +

p∑
j=1

ϕHj πt−j + εHt +

q∑
i=1

θHi ε
H
t−i

)

+
[
1−G

(
F̃t−1, γ

)](
ϕL0 +

p∑
j=1

ϕLj πt−j + εLt +

q∑
i=1

θLi ε
L
t−i

)
, (8)

with εit ∼ N (0, σ2
i ) for i = {L,H} . Moreover, we set G

(
F̃ , γ

)
= (1 + e−γF̃)−1, where F̃

32As we only identify the price gap distribution at each point in time, we are not able to disentangle the
contribution of the aggregate shock from that of idiosyncratic shocks. Therefore, for purely illustrative purposes,
we choose an autoregressive specification for the first-moment shock. More details are available in Appendix F.

33The STARMA(p,q) model also generalizes the threshold ARMA(p,q) model in DeGooijer (2017).
34Estimating the properties of a given regime by relying on the dynamics of inflation in a different regime

would bias our results towards not finding any evidence of non-linearity. In light of this, the asymmetries we
will be reporting in the remainder of this section acquire even more statistical relevance.
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Figure 6: Impulse Responses from the Ss Model
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Note: The graphs display the average inflation response to a 1% aggregate nominal shock, µt, in two periods

of relatively low and high price flexibility. The shock is assumed to die out with a persistence component of

0.5 and is depicted by the thin black line (with a negative sign). The left panel (low price flexibility) plots

the average inflation response in 2010, while the right panel (high price flexibility) plots the average inflation

response in 2015. In each of the two panels the vertical line indicates the half-life of the shock.

denotes the normalized flexibility index and γ is the speed of transition across regimes.35 We

allow for different degrees of inflation persistence across the two regimes, as captured by the

regime-specific autoregressive and moving average coefficients, as well as for different volatilities

of the innovations in either regime. The likelihood of the model can be easily computed by

recasting the system in state space (see, e.g., Harvey, 1990). We use Monte Carlo Markov-

chain methods developed in Chernozhukov and Hong (2003) for estimation and inference. The

parameter estimates, as well as their standard errors, are directly computed from the generated

chains.36

Focusing on the post-1996 sample, we estimate the model by imposing that, in both regimes,

the long-run inflation forecast is 2%, consistent with the Bank of England’s mandate. The pa-

rameter γ captures the speed at which we switch between classifying periods as high or low

flexibility regimes, and its identification relies on non-linear moments. We estimate this param-

eter by selecting the value that maximizes the likelihood function. This ensures that roughly

20% of the observations are classified in the high-flexibility (low-flexibility) regime, defined by

G
(
F̃t−1; γ

)
> 0.8 (G

(
F̃t−1; γ

)
< 0.2). The upper-left panel of Figure 7 reports G

(
F̃t−1; γ

)
.

This specification clearly identifies the 2009-2012 and post-2021 periods as characterized by

high price flexibility, whereas the 2002-2005 and 2015-2016 periods are marked by low flexibility.

Based on the Akaike criterion, we select p = 2 and q = 1.37

The bottom panels of Figure 7 presents the impulse-response functions to a one-standard

35We employ a backward-looking MA(12) of the flexibility index to get rid of seasonality in the data.
Moreover, we lag the index by one month, in order to avoid potential endogeneity with respect to CPI inflation.

36See Appendix G for further details.
37Figures H.4 and H.5 in Appendix H report the results for two alternative specifications. Our key insights

are not affected by the exact specification of the STARMA(p,q) model. The results are also robust to variations
in γ.
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Figure 7: Price Flexibility and Inflation Dynamics
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Note: The upper panels report the probability of being in a high flexibility regime, G
(
F̃t, γ

)
= (1+e−γF̃t)−1,

and the distributions of the estimated inflation volatility in the high and low price flexibility regimes. The
lower panels report the responses of inflation to a one-standard deviation shock in the STARMA(2,1) model.
Specifically, the bottom-left (right) panel graphs the response in the low (high) price flexibility regime. In
both cases, we also report the the response from a (linear) ARMA(2,1) model. 68% confidence intervals,
and the distribution of inflation volatility, are built based on the Markov Chain Monte Carlo (MCMC)
method developed in Chernozhukov and Hong (2003). In each of the two IRFs charts the vertical dashed
line indicates the half-life of the shock.

deviation shock to inflation in each of the two regimes, and compares them to the response from

an equivalent linear model. Consistent with Figure 6, the inflation response is more muted and

significantly more persistent during periods of relatively low price flexibility, with the half-life

of the shock being nearly 50% longer, compared to periods of high flexibility. Furthermore, the

implied inflation volatility is twice as large in the high-flexibility regime, with the on-impact

response 50% higher relative to the linear model. These results are broadly supportive of the

basic insights of the Ss model illustrated in the previous section, and highlight the importance

of keeping track of the degree of price flexibility.

Neglecting the nonlinearities tied to price flexibility may result in a significant underesti-

mation of inflation’s response during periods of high flexibility, and an overestimation during
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periods of low flexibility. This is highly relevant, from the perspective of forecasting and policy

making. Before we delve into this, though, we want to establish to which extent inflation

volatility and persistence correlate with price flexibility. While the overall level of inflation

depends on the blend and magnitude of shocks impacting the economy, the degree of price

flexibility is likely to play a key role in shaping their propagation. In this respect, it is useful

to recall that Forbes et al. (2018) highlight how UK inflation has shown relatively high volatil-

ity and low persistence in the 2008-2012 time-span and, to a lesser extent, around the early

2000s.38 These periods have been associated with large departures of inflation from the target.

Consistently, price flexibility as from our estimates peaks in both periods.

The upper-right panel of Figure 7 reports the distribution of the estimated inflation volatil-

ity, in the high and low price flexibility regimes. Periods of high flexibility display significantly

greater volatility, whereas inflation volatility is substantially lower under low price flexibility.

This suggests that time-varying inflation volatility can, at least in part, be attributed to the

changing degree of price flexibility. For instance, during the particularly low-volatility period

of 2014–2016, year-on-year inflation reached its lowest point, dipping below zero for the first

time in the post-WWII period. Analyses from the Bank of England attribute such weak in-

flation to the decline in oil prices and the depreciation of the pound.39 Our analysis suggests

that low price flexibility may have extended this period of subdued inflation. By contrast, the

post-COVID period and the 2009–2012 period, both identified as high price flexibility phases,

are marked by notably higher inflation volatility. In the next subsection, we explore how

non-linearities stemming from time variation in price flexibility may explain why the Bank of

England and professional forecasters at large have assumed that the impact of large inflationary

shocks would have been shorter-lived in the post-pandemic period, in spite of elevated price

flexibility.

5.2 State dependence and inflation projections

An immediate implication of the analysis so far is that inflation volatility and persistence

may vary significantly, depending on aggregate price flexibility. Specifically, inflation tends to

be more volatile, less persistent, and generally higher when flexibility is high. In this section,

we test whether the Bank of England and professional forecasters factor in the state-dependent

properties of inflation dynamics related to price flexibility, when forming their inflation expec-

tations. If this properly accounted for, the resulting inflation forecast errors should remain

uncorrelated with the flexibility regime.

38Volatility is measured by standard deviation of the mean reverting component of their model of inflation.
39See, e.g., the Inflation Report published on February 12, 2015.
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Table 3: Inflation Forecast Errors and Price Flexibility

(a) BoE MPC RPIX/CPI Forecast Error Bias

Horizon G = 0.2 G = 0.5 G = 0.8 F−stat R̃2

0 0.04 [0.20] -0.02 [0.59] -0.05 [0.16] 0.22 1.32

1 0.06 [0.23] 0.01 [0.87] -0.06 [0.33] 0.36 0.18

2 0.08 [0.19] -0.01 [0.93] -0.12 [0.20] 0.11 2.90

3 0.09 [0.19] -0.04 [0.61] -0.20 [0.10] 0.02 6.50

4 0.09 [0.18] -0.08 [0.37] -0.24 [0.06] 0.00 9.87

5 0.09 [0.10] -0.10 [0.21] -0.28 [0.03] 0.00 15.58

6 0.09 [0.06] -0.10 [0.20] -0.27 [0.02] 0.00 17.53

7 0.07 [0.08] -0.08 [0.26] -0.23 [0.03] 0.00 15.03

(b) Market Participants’ Forecast Error Bias

Horizon G = 0.2 G = 0.5 G = 0.8 F−stat R̃2

0 0.02 [0.65] -0.09 [0.24] -0.09 [0.11] 0.26 0.95

1 0.01 [0.86] -0.03 [0.69] -0.06 [0.41] 0.86 -2.20

2 0.06 [0.26] -0.02 [0.81] -0.12 [0.20] 0.17 2.01

3 0.07 [0.25] -0.06 [0.49] -0.20 [0.10] 0.03 5.67

4 0.07 [0.26] -0.10 [0.28] -0.25 [0.06] 0.01 8.79

5 0.07 [0.14] -0.12 [0.15] -0.29 [0.02] 0.00 14.92

6 0.07 [0.09] -0.13 [0.14] -0.29 [0.02] 0.00 17.49

7 0.06 [0.13] -0.10 [0.18] -0.25 [0.02] 0.00 15.12

Notes: The table reports the results of a quadratic spline regression of the forecast errors et+h|t (for different
forecast horizons, h, measured in quarters) on a quarterly average of an indicator of the normalized price

flexibility index, F̃ : Gt−1 = G(F̃t−1; γ) = (1 + e−γF̃t−1)−1. The regression is specified as et+h|t/h =

a0+a1 (Gt−1 − 0.5)+a2 (Gt−1 − 0.5)
2
+a3 (Gt−1 − 0.5)

2
1{Gt−1>0.5}G

2
t−1, where 1{Gt−1>0.5} is an indicator

function taking value 1 when Gt−1 > 0.5 and zero otherwise. The upper panel refers to the Bank of England
MPC’s RPIX/CPI forecast errors, while the bottom panel considers market participants’ forecast errors. For
each value of G, the two columns report the fitted êt+h|t evaluated at different levels of the indicator and
the p-value associated with the null hypothesis that êt+h|t is equal to 0 (this is calculated using Newey-West
standard errors), respectively. The penultimate column (F-stat) reports the p-value of the null hypothesis
that all the coefficients associated to the flexibility regime are equal to 0 (i.e., H0 : a1 = a2 = a3 = 0). The
last column reports the adjusted R-squared, denoted by R̃2.



Each quarter, the Bank of England’s Inflation Report publishes year-on-year inflation fore-

casts from the Monetary Policy Committee, alongside forecasts from market participants. Both

sets of forecasts target the Bank of England’s inflation index, which switched from RPIX to CPI

inflation in December 2003. We construct quarterly forecast errors as the difference between the

appropriate (mean) forecast40 and realized inflation at a given horizon: et+h|t = πt+h|t − πt+h.

Therefore, positive (negative) errors denote an overprediction (underprediction) of inflation.

Forecast errors, normalized by the forecast horizon, are then regressed on the logistic trans-

formation of the flexibility index, G
(
F̃t−1; γ

)
. Specifically, we use a quadratic spline function

with a knot at 0.5:

et+h|t/h = a0 + a1(Gt−1 − 0.5) + a2(Gt−1 − 0.5)2 + a31{Gt−1>0.5}(Gt−1 − 0.5)2, (9)

where 1{Gt−1>0.5} is an indicator function equal to 1 when Gt−1 > 0.5 and zero otherwise. This

specification allows us to capture various potential relationships between the flexibility regime

and the bias in inflation forecasts. The analysis is conducted on a sample of qurterly forecasts

produced by the Bank of England and professional forecasters, with h = 0, ..., 7 and over the

1998-2024 time interval.

Table 3 summarizes the regression results. The first six columns present the estimated

forecast bias (along with associated p-values) for low, average, and high levels of flexibility

(i.e., G = 0.2, 0.5, 0.8). The last two columns of the table provide the p-value for the null

hypothesis that no relationship exists between the forecast error and the flexibility regime, as

well as the corresponding R-squared (adjusted for the number of regressors).

While inflation forecasts tend to be unbiased when aggregate price flexibility is low or

average, there is evidence of a significant negative bias during periods of high price flexibility.

These findings support the notion that information regarding price flexibility is not fully utilized

by either the Central Bank or market participants. In particular, we detect a significant

negative bias in inflation forecasts from three quarters ahead (h > 2). This bias is not only

statistically significant, but also economically relevant. At the peak forecasts are, on average,

more than 150 basis points below actual inflation outturns. Accounting for this negative bias

during periods of high flexibility alone explains nearly 20% of the variability in the forecast

error in our sample.

It is natural to question to what extent our results are influenced by the post-COVID-19

experience. Failure to predict the scale and persistence of inflation is widely acknowledged, and

has drawn criticism towards the Bank of England, ultimately leading to an external review of

its inflation forecasts. Bernanke (2024) notes that similar forecast errors also characterize those

of professional forecasters and, more generally, Central Banks across G7 countries. Figure 8

compares the estimated bias from the specification in Equation 9 using the full sample (this

corresponds to the results in Table 3) with the bias for the subsample ending in 2020. While

the underprediction of the latest inflationary peak—which coincides with a period of rather

elevated price flexibility—affects our estimates, evidence of a significant and substantial bias

40The results remain virtually unchanged if we use the median or the mode, instead of the mean forecast.
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Figure 8: Inflation Forecast Error Bias
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Notes: Each panel reports the expected forecast error, êt+h|t, conditional on values of a the high-flexibility

regime probability, G. The blue line describes the mean forecast based on the full sample (1997:Q3 -

2024:Q2).The dashed line shows the conditional forecast error based on the sample excluding the post-

COVID-19 period (i.e., from 2021:Q1). The bands indicate the 90% confidence interval. The dots plot

observed forecast error against the mean of G in the quarter. Panel (a) and (b) refer to the Bank of

England MPC’s RPIX/CPI forecast errors, while the panel (c) and (d) considers market participants’

forecast errors. Negative values indicate a forecast that underpredicts the actual inflation outcome.

is already present in data prior to 2020.

This prompts the question of whether earlier recognition of this evidence might have re-

shaped the narrative on inflation persistence that dominated global and UK policy discussions

from mid-2021 to mid-2022. During this period, the Bank of England consistently predicted a

rapid return to target inflation, within a two-year horizon. Figure 9 compares the BoE’s in-

flation forecasts with realized inflation and bias-adjusted forecasts. To avoid look-ahead bias,

the latter rely only on pre-2020:Q4 data. While the precise magnitude of the inflationary spike

was by any means unforeseeable,41 adjusting for the bias would have markedly reduced fore-

41Applying Blanchard and Bernanke (2023)’s model to the UK, Haskel et al. (2024) highlight that this is
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Figure 9: Bias-adjusted Forecasts
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Notes: Each panel reports the CPI inflation forecasts produced by the BoE in the last quarter of 2020 and

the first two quarters of 2021, as well as the corresponding bias-corrected forecasts and realizations. The

bias adjustment is based on the fitted values from estimating Equation (9) on the sample up to 2020:Q4.

To get the bias, the high-flexibility regime probabilities G from the first month of the respective quarter

is used. Specifically, G(F̃t; γ) = [0.8164, 0.7991, 0.7560] for t = [2020:10, 2021:01, 2021:04].

cast errors. In fact, bias-adjusted forecasts suggest a more cautious view about the transitory

nature of the inflation spike as early as 2021:Q1, indicating that inflation would have remained

well above target by the end of the forecast horizon.

6 Concluding remarks

Looking at UK price microdata, we document distinctive patterns of time variation in some

key moments of the underlying process of price adjustment. A key implication of our analysis

is that employing time-dependent price-setting protocols to match the frequency of adjustment

would understate time variation in price flexibility, which is heavily influenced by the extensive

margin of price setting. In fact, our evidence assigns a prominent role to state-dependent

price setting, especially in the post-Great Recession sample. In doing so, we underscore the

importance of accommodating asymmetry and time variation in the hazard function and the

distribution of price gaps. In this regard, further research should investigate the sources of

such time variation and explore its connections to firm dynamics, market concentration, and

other pertinent micro- and macroeconomic factors.

We highlight a pronounced non-linearity in the price response to inflationary shocks, which

is fundamentally driven by the degree of price flexibility. Neither the Bank of England nor

professional forecasters appear consider state dependence when projecting CPI inflation. Both

sets of forecasters tend to underestimate the impact of inflationary shocks during periods of

relatively high price flexibility, when inflation is more volatile and less persistent. Indeed,

during the recent inflation surge, recognizing the relatively high level of price flexibility could

have prompted the Bank of England to exercise greater caution in projecting a swift return of

largely attributable to the (unforeseen) rapid rise in energy and food commodity prices during the period under
scrutiny.
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inflation to target in the early stages of the increase.

Employing timely price microdata to develop proxies for aggregate price flexibility is valu-

able not only for tracking overall inflation dynamics, but also for detecting shifts in how sectoral

prices adjust to demand and supply shocks, deepening our understanding of relative-price fluc-

tuations. Recognizing price flexibility as a key state variable in assessing inflation dynamics is

therefore essential for policymakers seeking to respond effectively to changing economic condi-

tions.
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Henkel, L., E. Wieland, A. B lażejowska, C. Conflitti, B. Fabo, L. Fadejeva,

J. Jonckheere, P. Karadi, P. Macias, J.-O. Menz, and P. a. Seiler (2023):

“Price setting during the Coronavirus (COVID-19) pandemic,” Occasional Paper Series 324,

European Central Bank.

31



Hobijn, B., F. Ravenna, and A. Tambalotti (2006): “Menu Costs at Work: Restaurant

Prices and the Introduction of the Euro,” The Quarterly Journal of Economics, 121, 1103–

1131.

Karadi, P. and A. Reiff (2019): “Menu Costs, Aggregate Fluctuations, and Large Shocks,”

American Economic Journal: Macroeconomics, 11, 111–146.

Kehoe, P. and V. Midrigan (2015): “Prices are sticky after all,” Journal of Monetary

Economics, 75, 35–53.

Klenow, P. J. and O. Kryvtsov (2008): “State-Dependent or Time-Dependent Pricing:

Does it Matter for Recent U.S. Inflation?” The Quarterly Journal of Economics, 123, 863–

904.

Komunjer, I. (2007): “Asymmetric power distribution: Theory and applications to risk

measurement,” Journal of Applied Econometrics, 22, 891–921.

Kryvtsov, O. and N. Vincent (2021): “The Cyclicality of Sales and Aggregate Price

Flexibility,” The Review of Economic Studies, 88, 334–377.

Luo, S. and D. Villar (2021): “The price adjustment hazard function: Evidence from high

inflation periods,” Journal of Economic Dynamics and Control, 130.

Midrigan, V. (2011): “Menu Costs, Multiproduct Firms, and Aggregate Fluctuations,”

Econometrica, 79, 1139–1180.

Montag, H. and D. Villar (2022): “Price-Setting During the Covid Era,” Economic Work-

ing Papers 547, Bureau of Labor Statistics.

Nakamura, A. O., E. Nakamura, and L. I. Nakamura (2011): “Price dynamics, retail

chains and inflation measurement,” Journal of Econometrics, 161, 47–55.

Nakamura, E. and J. Steinsson (2008): “Five Facts about Prices: A Reevaluation of

Menu Cost Models,” The Quarterly Journal of Economics, 123, 1415–1464.

——— (2010a): “Monetary Non-neutrality in a Multisector Menu Cost Model,” The Quarterly

Journal of Economics, 125, 961–1013.

——— (2010b): “More Facts About Prices – Supplement to “Five Facts About Prices: A

Reevaluation of Menu Cost Models”,” Online Supplement.

Nakamura, E., J. Steinsson, P. Sun, and D. Villar (2018): “The Elusive Costs of

Inflation: Price Dispersion during the U.S. Great Inflation,” Quarterly Journal of Economics,

Forthcoming.

ONS (2019): Consumer Price Indices: Technical Manual, Office for National Statistics, 2014

ed.

32



Rotemberg, J. J. (1999): “A Heuristic Method for Extracting Smooth Trends from Economic

Time Series,” NBER Working Papers 7439, National Bureau of Economic Research, Inc.

Stock, J. H. and M. W. Watson (2019): “Slack and Cyclically Sensitive Inflation,” NBER

Working Papers 25987.

Vavra, J. (2014): “Inflation Dynamics and Time-Varying Volatility: New Evidence and an

Ss Interpretation,” The Quarterly Journal of Economics, 129, 215–258.

33



Inflation and Price Flexibility

Supplementary Material

Ivan Petrella

Collegio Carlo Alberto, University of Turin, University of Warwick and CEPR.

Email: ivan.petrella@carloalberto.org

Emiliano Santoro

Department of Economics and Finance, Catholic University of Milan.

Email: emiliano.santoro@unicatt.it

Yannik Winkelmann

Department of Economics, University of Tübingen.
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A On the representativeness of the data

This section provides additional details on the construction of the dataset. The ONS data have a
good coverage of all COICOP sectors, with the exception of Housing and Housing Services (COICOP 4),
Communication (COICOP 8) and Education (COICOP 10), whose coverage are less than 21%, 6%, and
3%, respectively. Given the extremely low coveage, we exclude COICOP 4 and 10. We keep COICOP 8,
as the available price quotes are clustered in a small subset of items, such as Flower Delivery, Telephone
for home use and Phone Accessories.1

The left panel of Figure A.1 contrasts the weights assigned to each of the COICOP sectors to those
employed to build the CPI (re-normalized to exclude COICOP 4 and 10). Overall, we observe that using
the available price quotes results into relatively larger weights for COICOP 1 and 11, whereas sectors
7 and 9 are underweighed. The right panel of Figure A.1 reports the official CPI inflation together
with the inflation series retrieved from all the available price quotes (labeled COICOP) and the inflation
obtained once all filters described in Section 2 are applied (labeled Regular). Unfiltered data track quite
closely the official numbers, whereas the ‘regular’ series displays a robust correlation with the official
data (roughly 0.84), and shows a positive bias. The latter mainly emerges from the exclusion of sales
from the sample.

Figure A.1: Representativeness
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Notes: The left panel contrasts the weights assigned to each of the COICOP sectors to those as-
signed to build the CPI (re-normalized to exclude COICOP 4 and 10). The right panel reports the
official CPI inflation, together with the inflation series retrieved from all the available price quotes
(labeled COICOP) and the inflation obtained once all filters described in Section 2 are applied
(labeled Regular). The COICOP codes are (1) Food And Non-Alcoholic Beverages, (2) Alco-
holic Beverages, Tobacco And Narcotics, (3) Clothing And Footwear, (5) Furnishings, Household
Equipment And Routine Household Maintenance, (6) Health, (7) Transport, (8) Communication,
(9) Recreation And Culture, (11) Hotels, Cafes And Restaurants, (12) Miscellaneous Goods And
Services.

1Due to the small number of price quotes in this sector, the results would be little affected by its exclusion
from the analysis.
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B Aggregation and composition effects

Figure B.1: Aggregate vs Disaggregated Moments
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Notes: The figure compares various moments of the distribution of price changes with their coun-
terparts obtained by averaging the corresponding moments of the price quotes obtained for each of
the 25 COICOP group categories. The shaded vertical band indicates the duration of recessionary
episodes.
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C Model identification

In this appendix we check whether the SMM estimation strategy we employ for the estimation of
the generalized Ss model is able to separately identify the shape of the price gap distribution and the
hazard function.

The parameters of the model are identified through their ability to match the selected moments.
As noted in Section 3.1, we match the following moments of the distribution of price changes: mean,
median, standard deviation, interquartile range, difference between the 90th and 10th quantile of the
distribution, as well as (quantile-based) skewness and kurtosis. We also match the frequency and the
average size of prices movements, after distinguishing between positive and negative price changes, as
well as the observed rate of inflation.

We evaluate the systematic impact of each parameter on the moments that we are matching. To
this end, the first exercise we perform consists of investigating whether marginal variation in each of the
parameters of the model affects the moments that we are matching. Figure C.1 and Figure C.2 reports
the results of this exercise. We fix all the parameters at their median estimates, and for each column we
vary one of of them at the time (within the range of values that the parameters assume in our estimation)
and report the impact of these changes for some selected moments.

All parameters have an impact on a number of moments, and in the expected direction. For instance,
increasing the scale (tail) parameter of the price gap distribution increases (decreases) monotonically
the implied dispersion of the distribution of (non-zero) price changes, and in both cases decreases the
skewness and the kurtosis. Instead, changing the location or the shape parameter has an opposite impact
on skewness and kurtosis, and affects non-monotonically the dispersion (with higher dispersion obtained
for a more skewed distribution, regardless of the sign of the skewness). As for the parameters of the
hazard function, changing the constant term affects equally the frequency of price adjustment, whereas
changes in the slope for positive (negative) price gaps impacts the frequency of negative (positive) price
changes and the average negative (positive) price changes, leaving invariate the positive (negative) side.
These results confirm the observation of Berger and Vavra (2017) for the specific functional forms of the
price gap distribution and the hazard function we employ.

Having established that all the parameters have an impact on the moments we attempt to match, a
fair question is whether moment matching allows us to appropriately identify/distinguish the shape of
the price gap distribution from the shape of the hazard function. In fact, one might question whether the
specific model we choose is able to identify a fatter price gap distribution from a steeper hazard function,
or a skewed price gap distribution from an asymmetric hazard function. To this end, we simulate
samples of 100,000 price changes from the model, and then fit the model on each of these synthetic
samples by SMM, matching the same moments we use in the baseline estimation (see Section 3.1).
Figure C.3 contrasts the true price gap distribution (upper panel) and hazard function (lower panel) to
the estimated counterparts. We look at three possible different parameterizations of the model, and report
the ‘fan charts’ of the estimated functions. The specific parameterizations are merely meant to serve
for illustrative purposes: we would obtain very similar evidence by imposing alternative specifications.
Finally, for each set of calibrations, we simulate and estimate the model over 200 different samples.

The charts highlight that the model is able to separately identify the shape of the price gap and
hazard function in all the settings we consider. The discrepancy between the true parametrization and
the estimate is minimal, and the resulting match of the flexibility index and its decomposition is very
close to the true one.

It is also important to stress that Berger and Vavra (2017) produce a battery of exercises in support
of our approach. Most importantly, they address how well the resulting measure of price flexibility—
which only captures the impact response of prices to a nominal shock—reflects overall non-neutrality.
To this end, they estimate simulated data from the CalvoPlus model of Nakamura and Steinsson (2008),
and report close comovement between the impact response from the structural model and the estimated
index of price flexibility from the accounting framework. Notably, this exercise also addresses the criticism
towards estimating the generalized Ss model in every period, as if observations were independent across
time. In this respect, we should stress that standard structural frameworks tend to impose a rather
tight relationship between distributions at a given point in time and how they evolve. In line with our
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predecessors, we claim that imposing flexible functional forms within a period—in a way that represents
an intermediate step between a fully structural approach and a non parametric one—allows us to exploit
valuable information, in the perspective of studying time variation in aggregate price flexibility.

Figure C.1: Identification and the parameters of ft (x)
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Notes: In each panel, we vary one of the parameters of ft (x) at the time—while keeping the other
coefficients at their baseline estimate—and report its effect on key moments of the price change
distribution, as well as the resulting rate of inflation.
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Figure C.2: Identification and the parameters of Λt (x)
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Notes: In each panel, we vary one of the parameters of Λt (x) at the time—while keeping the other
coefficients at their baseline estimate—and report its effect on key moments of the price change
distribution, as well as the resulting rate of inflation.



Figure C.3: Model Simulations and Empirical Fit
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D Model estimates

Figure D.1: Parameters of the Price Gap Distribution
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Note: The red lines denote the three VAT changes in the sample. The shaded vertical bands
indicate the duration of recessionary episodes.

Figure D.2: Parameters of the Hazard Function
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Figure D.3: Fit of the Ss Model (Selected Moments)

0.01 0.02 0.03 0.04 0.05 0.06

0.01

0.02

0.03

0.04

0.05

Average Price Change

 
y = 0.74*x + 0.0046

2 4 6 8

2

4

6

8

Aggregate Inflation

 
y = 1*x + 0.045

0.08 0.1 0.12 0.14 0.16

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Interquartile Range

 
y = 1*x - 0.025

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Skewness

 
y = 1.2*x + 0.031

4 6 8 10

5

6

7

8

9

10

11

12
Frequency of Positive Price Change

 
y = 1*x + 0.6

2 3 4 5 6

3

4

5

6

7

Frequency of Negative Price Change

 
y = 0.69*x + 0.77

Notes: The figure compares the estimated moments from the Ss model in Section 3 (x-axis) to the
moments estimated from the raw data (y-axis). Each chart also reports the linear fit (green/broken)
line.

E A simple analytical setting to frame the stylized facts

We consider the menu cost model popularized by Barro (1972) and Dixit (1991). As illustrated by
Vavra (2014), the advantage of this framework is to provide us with a simple analytical setting to keep
track of the determinants of the frequency and the dispersion of price changes, as well as the dispersion
of price gaps, intended as the difference between the actual price of a given good and its reset price (i.e.,
the price that would have prevailed in the absence of price-setting frictions). For the sake of our analysis,
we will use this model as a prism through which interpreting diverging movements in the frequency of
price adjustment and the dispersion of price changes. Othwerise, the model has no presumption to map
into the statistical framework employed in the empirical analysis.
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Firms face a dynamic control problem where x—the deviation of the current price from the optimal
price—is a state variable. A wedge between the state variable and zero entails an out-of-equilibrium
cost αx2, where α can be inversely related to market power. When not adjusting, x follows a Brownian
motion dx = ϕdW , where W is the increment to the Wiener process. It is possible to change the value
of x by applying an instantly effective control at a lump-sum cost λ. From this environment, a simple
Ss rule emerges, according to which the optimal policy is ‘do not adjust’ when |x| < σ and ‘adjust to

zero’ when |x| ≥ σ, where σ =
(
6λϕ2/α

)1/4
denotes the standard deviation of price changes. Moreover,

fr = (α/6λ)1/4 ϕ is the frequency of adjustment.2

To provide an overview of different determinants of the distribution of price gaps and the associated
distribution of price changes, Figure E.1 considers three possible scenarios: i) a positive shift in the cost
of adjustment λ (or, equivalently, a negative shift in α) that affects the inaction region, while leaving the
distribution of price gaps unaffected; ii) a first-moment shock that causes a shift in the distribution of
price gaps, affecting all x’s in the same manner; iii) an increase in the dispersion of the distribution of
price gaps (i.e., a rise in ϕ).

As for i), a positive change in λ widens the inaction region, translating automatically into a reduction
in the frequency of adjustment and an increase in the dispersion of price changes, which is in line with the
behavior of the two statistics in the post-recession sample. As for ii), the immediate effect of a shift in the
distribution of price gaps is to push more firms out of the inaction region, thus inducing an increase in the
frequency of adjustment. Importantly, this result does not depend on the specific sign of the shock, as all
firms’ desired price changes will be affected in the same way. Thus, all firms pushed out of the inaction
region will denote price changes of the same sign, implying a decrease in their dispersion.3 Thus, while
negative comovement would emerge in this case, it is important to recognize that first-moment shocks
would not be suitable to characterize the (diverging) movements in the frequency and the dispersion that
have occurred over the post-recession sample.4 Finally, a rise in ϕ, as sketched in the last column of the
figure (iii), induces increased dispersion in the price gap distribution and an expansion in the inaction
region. As a result, both fr and σ increase.

Vavra (2014) points to second-moment shocks as potential drivers of the positive comovement between
the frequency of adjustment and price-change dispersion in U.S. CPI data. It is clear how this type of
shock would not be suitable to rationalize negative comovement. In fact, only an increase in the fixed
cost of adjustment and/or a drop in the cost of deviating from the optimal price may account for a
concurrent drop (increase) in the frequency of adjustment (dispersion of price changes), as observed after
the Great Recession.

2For analytical details and proofs, see Barro (1972) and Vavra (2014).
3In fact, Vavra (2014) shows that, while in environments with zero inflation small shocks to x do not produce

any effect on the frequency of adjustment and the dispersion of price changes, in the presence of positive trend
inflation the frequency (dispersion) increases (decreases).

4One should note that such movements could also be rationalized in the occurrence of a first-moment shock,
whenever the latter hits outside the steady state and shifts the distribution towards its ergodic counterpart.
However, our empirical evidence indicates that changes in the price-adjustment cost structure, as reflected in
upward trends in the markup associated with several industries/goods, are of primary importance, as opposed to
first- or second-moment shocks. In fact, first-moment shocks seem to account only for a small part of the persistent
increase in the dispersion of price changes, and mainly when aggregate inflation has come close to zero, towards
the end of the sample. In ongoing work we examine these issues in depth.
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Figure E.1: Analytical Framework
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Note: The first column considers a positive shift in λ (or a negative shift in α) that affects the inaction region, while leaving the distribution of price gaps
unaffected. The second column considers the effects of a first-moment shock that affects all x’s in the same direction. The last column depicts the effects of an
increase in ϕ. The upper panels report the ex-ante distribution of price gaps and the corresponding bands delimiting the inaction region (dotted-blue lines),
together with their ex-post counterparts (dashed-red lines). The bottom panels report the corresponding distributions of price changes.



It is important to stress that shifts in λ and α would immediately reflect into a change in the inaction
region, while leaving the price gap distribution unaffected. In this respect, it is possible to show show
how large diverging movements in the dispersion of price changes and the frequency of adjustment in
the post-recession period may be rationalized by an expansion of the inaction region that dominates
the effects of positive shifts in the dispersion of price gaps. Figure E.2 considers a situation in which
both ϕ and λ increase.5 The rise in the dispersion of price changes determines an expansion in the
inaction region, thus increasing the density outside the adjustment bands and, in turn, the frequency of
adjustment. This effect is counteracted by the rise in λ, which widens the inaction region further and
restricts the density outside the adjustment bands beyond the initial situation. If the expansion in the
inaction region is large enough to overcome the increase in dispersion, we observe opposite movements
in the cross-sectional dispersion of prices and the frequency of adjustment. This is in line with what we
observe in the post-recession period.

Figure E.2: A combined increase in ϕ and λ
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Note: We consider a positive shift in λ that affects the inaction region (while leaving the distribution of
price gaps unaffected), combined with an increase in the dispersion of the distribution of price gaps, ϕ.
The left panel reports the transformations occurring to the distribution of price gaps and the corresponding
bands delimiting the inaction region: the dotted (blue) line refers to the ex-ante situation, the dashed (red)
line denotes the effects of the volatility shift, while the dashed-dotted (magenta) line refers to the effects
produced by the joint increase in ϕ and λ. The right panel reports the distributions of price changes, both
in the ex-ante situation and in the case of a combined increase in ϕ and λ.

5Once again, a drop in α would lead to qualitatively similar results.
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F Details on the computation of the impulse response

function from the Ss model

This appendix gives a brief account of how we compute the impulse response functions from the
generalized Ss model presented in Section 3. We start by specifying a process for the exogenous (first-
moment) shock.6 Specifically, we assume that:

µt = ρµt−1 + ηt.

Thus, we fix ρ = 0.5 and select a shock η0 = −1%. In light of this, should prices be fully flexible, we
would observe a 1% increase of inflation that dies out relatively quickly.

The impulse responses are then calculated as:

IRFj = E(πt+j |µt+j = µ̂t+j)− E(πt+j |µt+j = 0)

= −
∫
zjΛt (z) ft (z) dz +

∫
xjΛt (x) ft (x) dx,

where zj = xj + µ̂t+j . Note that, by definition, the cumulative impact of the shock equals the sum of
the µt’s.

G Estimation of the STARMA (p,q) model

Recall the smooth transition ARMA model, STARMA(p,q), in Section 5.1:

πt = G
(
F̃t−1; γ

)ϕH0 +

p∑
j=1

ϕHi πt−j + εHt +

q∑
i=1

θHi ε
H
t−i


+
[
1−G

(
F̃t−1; γ

)]ϕL0 +

p∑
j=1

ϕLi πt−j + εLt +

q∑
i=1

θLi ε
L
t−i

 . (G.1)

This can be easily casted in state space. Therefore the likelihood can be calculated recursively using the
Kalman filter (see Harvey, 1990). Since the model is highly non-linear in the parameters, it is possible
to have several local optima and one must try different starting values of the parameters. Furthermore,
given the non-linearity of the problem, it may be difficult to construct confidence intervals for parameter
estimates, as well as impulse responses. To address these issues, we use a Markov Chain Monte Carlo
(MCMC) method developed in Chernozhukov and Hong (2003; henceforth CH). This method delivers
not only a global optimum but also distributions of parameter estimates.

Denote with θ the vector of parameters. We employ the Hastings-Metropolis algorithm to implement
CH’s estimation method. Specifically, our procedure to construct chains of length N can be summarized
as follows:

• Step 1 : Draw ϑ(n+1), a candidate vector of parameter values for the chain’s n + 1 state, as
ϑ(n+1) = θ(n)+un where un is a vector of iid shocks taken from a student-t distribution with zero
mean, ν = 5 degrees of freedom and variance Ω.

• Step 2 : Take the n+ 1 state of the chain as

θ(n+1) =

 ϑ(n+1) with probability min

{
1,

L(ϑ(n+1))
L(θ(n))

}
θ(n) otherwise

6Since we assume that the shock has the same impact on all price quotes, the shock acts as a location shifter
of the price gap distribution.
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where L (θ) denotes the value of the likelihood of the model evaluated at the parameters values θ.

Specifically, we use an adaptive step for the value of Ω, i.e. this is recalibrated using the accepted
draws in the initial part of the chain and then adjusted on the fly to generate 25− 35% acceptance rates
of candidate draws, as proposed in Gelman et al. (2004). We use a total of 50,000 draws, and drop the
first 25,000 draws (i.e., the ‘burn-in’ period). We then pick the 1-every-5 accepted draws to mitigate
the possible autocorrelations in the draws. We run a series of diagnostics to check the properties of
the resulting distributions from the generated chains. We find that the simulated chains converge to
stationary distributions and that simulated parameter values are consistent with good identification of
parameters.

CH show that θ= 1
N

∑N
i=1 θ

(i) is a consistent estimate of θ under standard regularity assumptions of
maximum likelihood estimators. CH also prove that the covariance matrix of the estimate of θ is given
by the variance of the estimates in the generated chain. Furthermore, we can use the generated chain of
parameter values θ(i) to construct confidence intervals for the impulse responses.
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H Additional Results and Robustness

Figure H.1: Additional statistics from price microdata
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Notes: The frequency of adjustment, frt , is computed as
∑

i ωi,t1{∆pi,t ̸=0}, where ωi,t denotes the CPI
weight associated to good i at time t, and 1{∆pi,t ̸=0} = 1 if ∆pi,t ̸= 0 and zero otherwise. The average price

change, instead, is computed as fr−1
t

∑
i ωi,t1{∆pi,t ̸=0}∆pi,t. The positive and negative counterparts of these

statistics are obtained by conditioning them on positive and negative price changes, respectively. All series
are in percentage terms. In the upper-right panel we report the mirror image of the average of negative price
changes. The skewness of the distribution of price changes is calculated as

q90,t+q10,t−2q50,t
q90,t−q10,t

. The lower-right

panel reports the price dispersion on the right (left) side of the median price change computed as q50 − q10
(q90 − q50). The shaded vertical bands indicate the duration of recessionary episodes.
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Figure H.2: Comparison with Alvarez et al. (2016)
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Note: The left panel of the figure reports the cumulated output response to a monetary policy
shock (solid-blue line), as computed by Alvarez et al. (2016), as well as the (negative of the) index
of price flexibility, as computed by Caballero and Engel (2007) (dashed-red line). The right panel
features the cumulated output response to a monetary policy shock (solid-blue line) against the
(negative of the) cumulated inflation response (dashed-red line), the latter being cumulated over
a 18-month period.

Figure H.3: Price Flexibility and Inflation Persistence STARMA(2,4)
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Note: Figure H.4 reports the responses of inflation to a 1% shock in a STARMA(2,4) model. The
left (right) panel graphs the response in the low (high) price flexibility regime. In both cases we
also report the response from a (linear) ARMA(2,4) model. 68% confidence intervals are built
based on the Markov Chain Monte Carlo (MCMC) method developed in Chernozhukov and Hong
(2003). In each of the two charts the vertical line indicates the half-life of the shock.



Figure H.4: Price Flexibility and Inflation Persistence STARMA(1,1)
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Note: Figure H.4 reports the responses of inflation to a 1% shock in a STARMA(1,1) model. The
left (right) panel graphs the response in the low (high) price flexibility regime. In both cases we
also report the response from a (linear) ARMA(1,1) model. 68% confidence intervals are built
based on the Markov Chain Monte Carlo (MCMC) method developed in Chernozhukov and Hong
(2003). In each of the two charts the vertical line indicates the half-life of the shock.

Figure H.5: Price Flexibility and Inflation Volatility
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Notes: Each panel reports the distribution of the estimated inflation volatility in the two regimes. The
left panel refers to a STARMA(2,4) model, while the right panel refers to a STARMA(1,1).


